In exploring the space of crossed stick puzzles, I’ve gone on a tangent into the world of binary words and their symmetries. A binary word is just a string where the “letters” can be one of two symbols; for convenience we’ll use 0 and 1. (The distinction between a “word” and a number in binary is that a word can have any number of leading 0’s, and these are significant.)

The usefulness of binary words in crossed stick puzzle design comes from our ability to encode them in the types of slots used in a piece of a puzzle. For example, my decagram puzzle uses pieces with outer slots that could point down or up, and inner slots that always point up, but could be deep or shallow. We can assign 0 to down and 1 to up for the outer slots, and 0 to deep and 1 to shallow for the outer slots. Then, reading across the slots, we get a binary word corresponding to a given piece. For example, down-shallow-deep-up is `0101`

.

One benefit of using binary words is that we can enumerate the possible pieces in a puzzle by counting the binary words of a given length, (in this case four). But there is a snag: The piece we called `0101`

can be flipped horizontally, after which it would read as `1010`

. It seems that rather than plain binary words, what we want are the equivalence classes of binary words formed by some symmetry action, in this case, reversing the word. Examining these gives us four symmetrical words that map to themselves upon flipping, and six pairs of words that flip to each other, for a total of ten classes of length four.

Instead of horizontal flipping, we could, if our slots are only using an up vs. down slot scheme, flip them vertically. In terms of the effect on the pieces, this will invert all of the 0’s to 1 and vice versa. This gives us eight pairs of words that flip to each other. We could also allow both horizontal and vertical flipping. In this case there are six classes of words of length four.

At this point, you might want a table with the number of binary words of each type. That way, when you come up with a crossed stick puzzle idea you can look at the table on the row with the number of slots in the pieces, and see if there’s an entry that gives you the number of pieces you’d like. Or you could go the other direction, and look at an entry in the table and try to come up with a good puzzle for that entry. (This is how I designed my Decagram puzzle.)

Length | Fixed | Invertible | Reversible | Inv. & Rev. |

1 | 2 | 1 | 2 | 1 |

2 | 4 | 2 | 3 | 2 |

3 | 8 | 4 | 6 | 3 |

4 | 16 | 8 | 10 | 6 |

5 | 32 | 16 | 20 | 10 |

6 | 64 | 32 | 36 | 20 |

7 | 128 | 64 | 72 | 36 |

Let’s give it a try using the piece configuration from my last post:

Applying the table to this, there are 12 pieces with 4 intersections (and thus, slots) in that configuration. There are no entries of 12 in that row, so we’re going to have to get creative. There’s a 6 in the Inv. & Rev. column; we can make our (well, my) puzzle have two copies of each piece corresponding to one of those. The intersection points are conveniently symmetrical, which gives us reversibility, and if we use up/down slots, we get invertibility. So now we have a puzzle design.

Of course, there’s one step left, which is making sure that the puzzle can be solved. (Ideally, by a human being of reasonable intelligence devoting no more than a reasonable amount of time.) It is quite possible to develop a design for a puzzle of this type that can’t be solved.

For example, this star of David puzzle, using one set of the invertible & reversible 4 slot pieces, is unsolvable. To see why, look at the relevant binary words, and consider the first and last digits, corresponding to the slots at the six points of the star.

`0000`

0001

0010

0011

0101

0110

There are three 1’s in the external slots. Inverting a word may change that number by two, or keep it the same. Reversing a word will not change the number of 1’s. Therefore, the number of 1’s must always be odd. But since each intersection in a solved puzzle must have one up and one down slot, there must be exactly six 1’s in external slots in a solved puzzle. Thus, the puzzle is unsolvable. (However, if we had two copies of each piece, we could possibly make *two* stars of David by swapping pieces between the sets. This gives us a second challenge for the set above. It’s starting to look like a keeper!)

Stepping away from crossed stick puzzles, it turns out that all of the fun things that you can do with binary words can be done with these symmetry variants. And when I think of fun things you can do with binary words, I think of de Bruijn sequences and Gray Codes! But this post has gotten long enough already; that will have to wait for another post.